

Meta-Analysis on the Clinical Outcomes With Polypills for Cardiovascular Disease Prevention

Ramy Sedhom, MD, MSa, Mohamed Hamed, MDb, Weiyi Tan, MDc, Hend Mansoor, PhD, PharmDd, Liset Stoletniy, MDa, Mamas Mamas, BM BChe,f, Dmitry Abramov, MDa, Islam Y. Elgendy, MDg, and Ayman Elbadawi, MD, PhDc.
© 2023 Elsevier Inc. All rights reserved. (Am JCardiol 2023;201:211–218)

By Resident Ben Youssef Yesmine

Emergency Departement Of Monastir

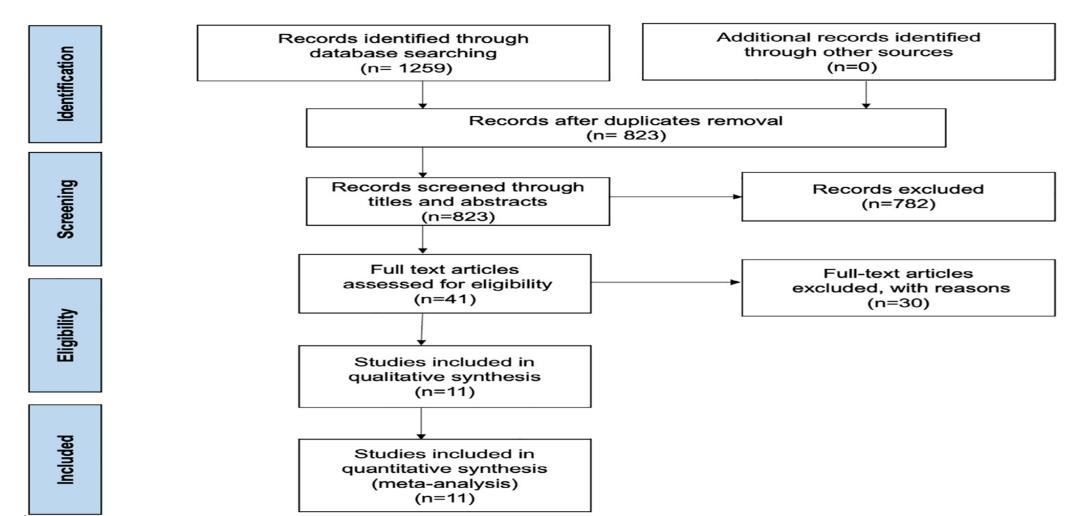
Background:

- Cardiovascular disease (CVD) is the leading cause of death worldwide mainly because of aging and the increase of traditional CVD risk factors.
- Hypertension and elevated low-density lipoproteins (LDLs) are 2 of the most important risk factors for CVD, that's why the benefits of antihypertensives and statins in reducing major adverse cardiovascular and cerebrovascular events (MACCEs) are well established, however adherence to these treatements was very poor, therefore the concept of a polypill to better the adherence leading to the reduction of MACCE's.
- A polypill consists of a combination of :statin, aspirin, and 3 antihypertensives it was proposed 20 years ago.

Methods:

1/A computerized search of MEDLINE, EMBASE, and Cochrane databases was performed without language restriction through January 2023, using the terms "polypill" and "fixed-dose combination," separately and in combination to identify RCTs that evaluated the outcomes of polypill therapy in CVD prevention.

2/<u>We included</u> RCTs that compared the clinical outcomes of polypill therapy versus control for CVD prevention. The control group could have included patients receiving a placebo or usual care.


3/<u>We included</u> RCTs evaluating the outcomes of polypills in patients with or without established CVD.

- 4/<u>We excluded</u> RCTs not reporting clinical outcomes and studies with a follow-up period of <1 year.
- The primary outcome of the study was the incidence of MACCEs as defined by each study.
- The secondary outcomes included the individual components of the primary outcome: adherence, serious adverse events, and major bleeding.
- 5/Studies were classified into low risk, unclear risk, or high risk.
- 6/The analysis was performed using an intention-to-treat model.

Results:

<u>The final analysis included 11 RCTs</u> with a total of 25,389 patients; 12,791 patients were in the polypill arm, and

12,598 patients were in the control arm. The follow-up period ranged from 1 to 5 years.

1 RCT included patients with established CVD, 6RCTs included patients with and without CVD, 4 RCTs included patients without established CVD.

Table 2
Baseline characteristics of the studies population

Study		Age in years, mean (+/- SD)	Female	BMI kg/m ² , mean (SD)	Hypertension	Diabetes	Smoking	Established CVD
SECURE	FDC	75.8 (6.7)	31%	27.4 (4.4)	77%	42%	51.2%	100%
	Control	76.1 (6.5)	31%	27.5 (4.3)	78.8%	43.2%	51.4%	100%
PolyIran-Liver	FDC	58.6 (6.3)	49.7%	28.1 (25.1-31.7)*	52.6%	22.1%	18.4%	18.3%
	Control	59.4 (6.9)	47.5%	28.1 (25.2-31.2)*	56.1%	21.1%	23.9%	13.5%
TIPS-3	FDC	63.8 (6.5)	52.1%	25.8 (4.6)	83.4%	36.5%	9.5%	0
	Control	64.1 (6.8)	53.3%	25.6 (4.6)	83%	37.1%	8.1%	0
PolyIran	FDC	59.3 (59-59.6)*	51.5%	26.6 (26.3-27)*	49%	14.5%	3.9%	11.3%
	Control	59.7 (59.4-60.1)*	49.1%	26.4 (26.1-26.8)*	49.6%	15.6%	5.4%	10.2%
Muñoz et al.	FDC	56 (6)	56%	31.3 (8.5)	42%	-	44%	0
	Control	56 (6)	64%	30.4 (8.4)	43%	-	52%	0
HOPE-3	FDC	65.7 (6.3)	46.1%	27.2 (4.8)	37.7%	6.2%	28%	0
	Control	65.7 (6.3)	46.7%	27.1 (4.7)	38.3%	5.3%	28.1%	0
Kanyini GAP	FDC	63.4 (12.5)	36.7%	-	-	59.5%	34.8%	58.8%
	Control	63.7 (12.7)	37.3%	-	-	54.8%	31.2%	63.4%
IMPACT	FDC	62 (8)	39%	33 (7)	-	44%	29%	45%
	Control	62 (8)	34%	33 (7)	-	41%	32%	46%
UMPIRE	FDC	62.1 (10.4)	18.5%	27 (4.6)	92.4%	28.2%	54%	-
	Control	61.6 (10.8)	17.7%	26.9 (4.7)	93.5%	28%	50.3%	-
CRUCIAL	FDC	60 (10)	46.6%	28.7 (5.2)	-	42.6%	40.5%	-
	Control	60.3 (10)	49.5%	28.9 (5)	-	42%	36.5%	
Malekzadeh et al.	FDC	59 (6.5)	37.8%	26.4 (4.3)	-	-	19.1%	0%
	Control	59.1 (7.3)	28.6%	26 (4.2)	-	-	23.5%	0%

CVD = cardiovascular disease; FDC = fixed-dose combination; IQR = interquartile range; SD = standard deviation.

^{*} Median (IQR).

Polypill therapy was associated with a lower risk of MACCE (5.8% vs 7.7%; RR 0.78; 95% confidence interval [CI] 0.67 to 0.91)

A LETURNITE SMEMIOLOGIJA VEJPING III SMEMIOLIMOVIMOV MOVIMOVA LETURNOM

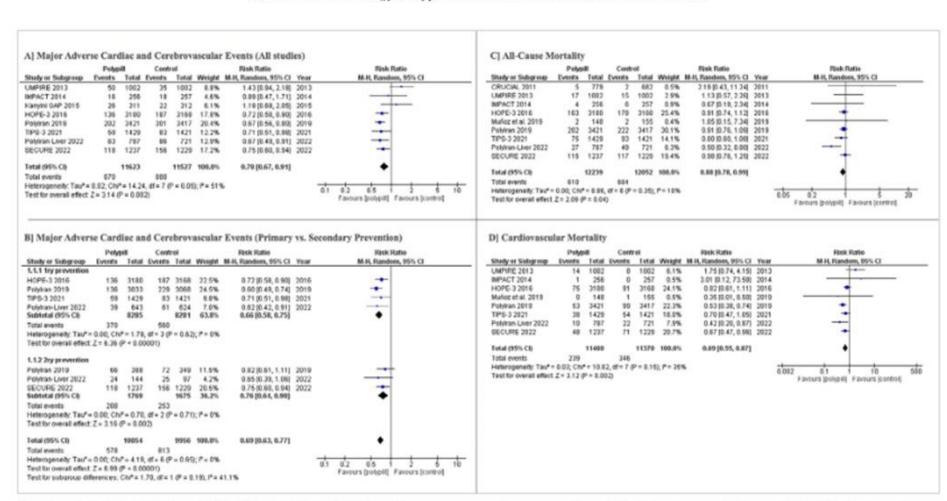


Figure 2. Forest plot for (A) Overall MACCE, (B) MACCE in primary vs secondary prevention, (C) All-cause mortality, and (D) Cardiovascular mortality.

M-H = Mantel-Haenszel.

Polypill therapy was associated with a lower risk of all-cause mortality cardiovascular mortality myocardial stroke and cardiovascular hospitalizations

There was no difference between both groups in the incidence of heart failure and revascularization

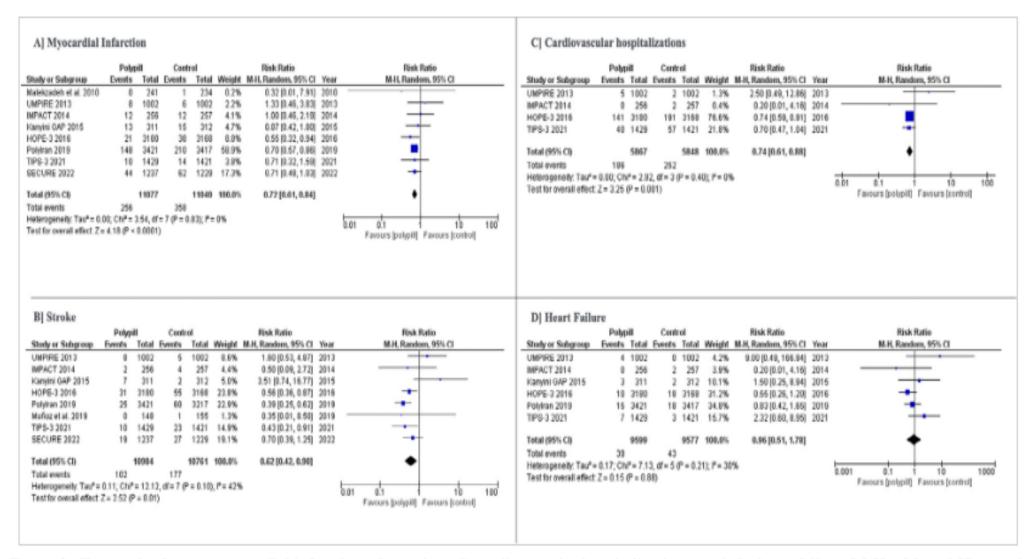


Figure 3. Forest plot for (A) myocardial infarction, (B) stroke, (C) cardiovascular hospitalizations, and (D) heart failure. M-H = Mantel-Haenszel.

Polypill therapy was associated with higher adherence

There was no difference between both groups in the incidence of adverse events and risk of major bleeding

A] Adherence

	Polyp	iII	Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Malekzadeh et al. 2010	214	241	208	234	14.8%	1.00 [0.94, 1.06]	2010	+
UMPIRE 2013	829	961	621	960	15.0%	1.33 [1.26, 1.41]	2013	•
IMPACT 2014	208	256	119	257	12.5%	1.75 [1.52, 2.03]	2014	-
Kanyini GAP 2015	213	304	143	305	12.7%	1.49 [1.30, 1.72]	2015	-
HOPE-3 2016	2245	3180	2140	3168	15.3%	1.05 [1.01, 1.08]	2016	•
TIPS-3 2021	1937	2861	1979	2852	15.3%	0.98 [0.94, 1.01]	2021	4
SECURE 2022	653	1237	538	1229	14.4%	1.21 [1.11, 1.31]	2022	-
Total (95% CI)		9040		9005	100.0%	1.21 [1.08, 1.37]		◆
Total events	6299		5748					
Heterogeneity: Tau ² = 0.0	12; Chi2 =	174.39	df = 6 (F	< 0.00	1001); $I^2 = 9$	97%	-	01 02 05 1 2 5 10
Test for overall effect: Z =	3.26 (P =	0.001)						Favours (control) Favours (polypill)

B] Adverse Events

	Polyp	iII	Contr	lo		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Malekzadeh et al. 2010	2	241	0	234	0.4%	4.86 [0.23, 100.60]	2010	
CRUCIAL 2011	52	779	4	682	3.0%	11.38 [4.14, 31.30]	2011	
UMPIRE 2013	118	1002	102	1002	16.0%	1.16 [0.90, 1.49]	2013	 -
IMPACT 2014	99	256	93	257	16.9%	1.07 [0.85, 1.34]	2014	+
Kanyini GAP 2015	144	311	127	312	18.5%	1.14 [0.95, 1.36]	2015	-
HOPE-3 2016	697	3180	757	3168	21.1%	0.92 [0.84, 1.00]	2016	•
TIPS-3 2021	12	1429	16	1421	5.0%	0.75 [0.35, 1.57]	2021	
SECURE 2022	237	1237	224	1229	19.0%	1.05 [0.89, 1.24]	2022	<u>†</u>
Total (95% CI)		8435		8305	100.0%	1.12 [0.93, 1.36]		•
Total events	1361		1323					
Heterogeneity: Tau ² = 0.0	04; Chi* =	31.61.	df = 7 (P	< 0.000	11); $I^2 = 78$	1%	//	10 10 100
Test for overall effect: Z=	1.19 (P =	0.24)	_					0.01 0.1 i 10 100 Favours [polypill] Favours [control]

C] Major Bleeding

	Polyp	ill	Contr	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
IMPACT 2014	4	256	0	257	1.0%	9.04 [0.49, 166.96]	2014	
Polylran 2019	23	3421	20	3417	24.5%	1.15 [0.63, 2.09]	2019	
TIPS-3 2021	9	1429	12	1421	11.8%	0.75 [0.32, 1.76]	2021	
SECURE 2022	57	1237	49	1229	62.7%	1.16 [0.80, 1.68]	2022	
Total (95% CI)		6343		6324	100.0%	1.12 [0.83, 1.50]		→
Total events	93		81					
Heterogeneity: Tau* =	0.00; Ch	$i^x = 2.8$	8, df = 3 (P = 0.4	1); $I^x = 09$	6	<u></u>	01 01 1 10 100
Test for overall effect: $Z = 0.75$ (P = 0.46)								.01 0.1 1 10 100 Favours (polypill) Favours (control)

Figure 4. Forest plot for (A) adherence, (B) adverse events, and (C) major bleeding. M-H = Mantel-Haenszel.

Discussion: In this meta-analysis of 11 RCTs including 25,389 patients, we evaluated the role of polypill therapy in CVD prevention:

- 1/Polypill therapy was associated with a lower incidence of cardiac events compared with placebo or usual-minimal care.
- 2/The observed reduction of MACCEs with the polypill strategy was consistent across the included studies.
- 3/Polypill therapy was associated with a higher degree of adherence.
- 4/There was no difference between both groups in the incidence of major bleeding or other adverse events.
- 5/Statins were included in all RCTs, they have been shown to reduce the risk of MACCE in both primary and secondary prevention.
- 6/Moreover, a meta-analysis of 25 trials found that in patients with established CVD but without hypertension, antihypertensive therapy was associated with decreased risk of MACCEs.
- 7/The use of aspirin in primary CVD prevention is controversial with recent data showing that although aspirin reduces the risk of nonfatal myocardial infarction, it is not associated with lower mortality risk and significantly increases the risk of major bleeding

Conclusion:

- In this meta-analysis of RCTs, a polypill strategy was associated with a lower incidence of MACCEs. This benefit was consistent for both primary and secondary prevention.
- A polypill strategy was not associated with a higher incidence of adverse events and was associated with a higher degree of adherence.
- These findings support the widespread use of a polypill strategy in patients at higher risk or with CVD.

The present analysis has several limitations:

- 1/There was high degree of heterogeneity for the primary study outcome.
- 2/The components of the polypill, the definition of the control arm, and the follow-up period varied across the included studies.
- 3/There were variabilities in the included studies in the inclusion criteria, components of the polypill, and end point definition.
- 4/There were insufficient data across the included studies to pool the treatment effects for polypills versus control approaches on cardiovascular risk factors.

Thank you for your attention!

