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Static and dynamic preload indicators in multiple organ dysfunction
syndrome

SOUDANI MARGHLI1 and SEMIR NOUIRA2

1Medical Intensive Care Unit, Tahar Sfar University Hospital, Mahdia, Tunisia and 2Emergency Department, Experimental

Research Unit (04/UR/08-20), Fattouma Bourguiba University Hospital, Monastir, Tunisia

Abstract
In patients with multiple organ dysfunction syndrome, early optimization of cardiac preload is required to improve outcome.
This review describes available static and dynamic indices used as bedside indicators of cardiac preload and fluid
responsiveness in critically ill patients. Static indices (mostly derived from a pulmonary artery catheter or echocardiography)
are based on measurements of cardiac pressures and volumes. Dynamic indices are based on a functional assessment of the
pressure�volume relationship and the heart�lung interaction. Available data demonstrated that dynamic indices such as
pulse pressure variation and stroke volume variation were more reliable predictors of fluid responsiveness than static indices.
Dynamic indices using non-invasive devices are also proposed and it is expected that they will be used more often in future.
However, spontaneous breathing movements and arrhythmia are the major limitations to the use of dynamic indices in
clinical practice. In this respect, new volumetric bedside assessment methods could represent good alternatives.

Key words: Arterial systolic pressure variation, cardiac preload, central venous pressure, global end-diastolic volume,

pulmonary artery occlusion pressure, pulse pressure variation, severe sepsis, stroke volume variation

Introduction

Multiple organ dysfunction syndrome (MODS) is

defined as the presence of altered organ function in

an acutely ill patient such that homeostasis cannot be

maintained without intervention (1). Identification

of this abnormality should occur during a period in

which organ support can achieve better function and

prevent organ failure. MODS is a normal complica-

tion of septic shock in which hypovolemia plays an

important factor contributing to the impairment of

tissue perfusion. Therefore, prompt correction of a

vascular volume deficit is a prerequisite for improv-

ing survival in patients with MODS. Apart from

situations in which hypovolemia is evident and a

favourable response to fluid administration will be

seen, clinical and biological parameters often fail to

predict hypovolemia (2). Inappropriate use of vo-

lume expansion carries the risk of generating volume

overload and pulmonary oedema and/or right

ventricular dysfunction. Consequently, reliable pre-

dictors of fluid responsiveness are needed, especially

in the early phase of cardiocirculatory deterioration.

In the clinical setting, different static and dynamic

indices have been shown to be useful indicators of

cardiac preload. Static indices are based on methods

that are able to assess ventricular volumes and

pressures while dynamic indices consist of the

assessment of fluid responsiveness using the relation

between changes in stroke volume (SV) with positive

pressure ventilation. In this review we analyse the

clinical value and limitations of the methods most

frequently used to assess cardiac preload and predict

fluid responsiveness.

Static indices

Cardiac filling pressures

Central venous pressure (CVP) and pulmonary

artery occlusion pressure (Ppao) are widely used to

measure right and left ventricular preload in patients
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requiring invasive hemodynamic monitoring (3).

These hemodynamic parameters are recommended

by the American Society of Critical Care Medicine

(4) to monitor fluid resuscitation in patients with

septic shock in order to optimize cardiac output.

Nevertheless, cardiac filling pressures have been

found to be inaccurate for predicting fluid respon-

siveness as the relation between cardiac filling

pressure and ventricular end-diastolic volume de-

pends on various factors, including the effect of

mechanical ventilation on extramural pressure and

changes in ventricular compliance induced by sepsis,

ischemia and catecholamine treatment (5�8). Ven-

tricular and vascular compliance is frequently altered

in septic patients. For a given pressure, different

Frank�Starling curves are possible, depending on

cardiac systolic and diastolic function (Fig. 1). In a

critical review of available studies evaluating the

value of static and dynamic parameters for predict-

ing fluid responsiveness, Michard and Teboul (9)

demonstrated that neither CVP nor Ppao was a

reliable predictor of volume responsiveness. These

results are in agreement with a recent analysis of data

on 150 fluid challenges in septic patients published

by the same group (5). It was shown that

pre-infusion CVP was similar in responders and

non-responders (894 vs 994 mmHg), while pre-

infusion Ppao was slightly lower in responders than

non-responders (1094 vs 1194 mmHg; pB0.05).

The authors also demonstrated that available thresh-

old values currently recommended to predict fluid

responsiveness are not appropriate to guide fluid

therapy in septic patients.

In the setting of acute respiratory distress syn-

drome, in which mechanical ventilation with a high

positive end-expiratory pressure is generally used,

Ppao may reflect not the left ventricular end-

diastolic pressure but rather the alveolar pressure.

In these patients, Ppao, even when measured at end

expiration, still significantly overestimates the left

ventricular (LV) filling pressure. Two simple meth-

ods have been proposed to correct for this over-

estimation and thus to calculate the true LV filling

pressure (7,10). Pinsky et al. (10) demonstrated that

in cardiac surgery patients, nadir Ppao measured

after airway disconnection from the ventilator was a

better estimate of LV filling pressure than Ppao when

high levels of positive end-expiratory pressure were

used. Teboul et al. (7) have demonstrated that an

indexing of the transmission of proportional alveolar

pressure to Ppao in the estimation of LV filling

pressure is equivalent to the nadir method.

Ventricular end-diastolic volumes

Right ventricular end-diastolic volume. Because right

ventricular performance may be the limiting factor in

determining cardiac output in many clinical situa-

tions associated with pulmonary hypertension, right

ventricular end-diastolic volume (RVEDV) was con-

sidered an indicator of ventricular preload. Using a

pulmonary artery catheter with a fast-response

thermistor, it was demonstrated that an RVEDV

index (RVEDVI)B90 ml/m2 was consistently asso-

ciated with an increase in cardiac output in response

to volume loading (11�14). Conversely, an

RVEDVI�140 ml/m2 seems to be the upper limit

to volume responsiveness (12,13). The presence of

tachycardia (�130 beats/min), arrhythmia and im-

portant tricuspid insufficiency constitutes the major

limitation to the use of RVEDV as a preload

indicator.

Left ventricular end-diastolic area. Conflicting results

have been obtained (15�19) concerning the predic-

tive value of the left ventricular end-diastolic area

(LVEDA) for predicting cardiac output changes in

response to fluid loading. In one study (15) a value

of the LVEDA index (LVEDAI)B9 cm2/m2 was

predictive of a positive response to fluid loading,

whereas other studies failed to identify such a cut-off

value. Of note, a great variation in LVEDA was

observed in healthy subjects (20) and in anaesthe-

tized patients without cardiac failure (21). More-

over, LVEDA as assessed by echocardiography is

operator-dependent and does not always accurately

reflect the ventricular end-diastolic volume (22).

Global end-diastolic volume. Volumetric measures of

preload, such as intrathoracic blood volume and

global end-diastolic volume (GEDV), have repeatedly

been shown to reflect preload better than commonly

used filling pressures in septic patients. GEDV is the

Fig. 1. Frank�Starling curves in normal and failing heart. A given

value of cardiac ventricular pressure (P) can be associated with

higher SV in the case of a normal heart (SV2) compared to a non

compliant failing heart (SV1).

Preload indicators in MODS 23
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volume of blood in the four heart chambers measured

by means of the transpulmonary thermodilution

curve (23). GEDV is considered to be an indicator

of cardiac preload and its measurement is less

influenced by changes in intrathoracic pressures and

myocardial compliance than cardiac filling pressures.

This technique needs only a femoral artery sheath and

is considered to be less invasive than the use of a

pulmonary artery catheter. In patients with septic

shock, GEDV was shown to increase with volume

loading but not with dobutamine, despite a similar

increase in cardiac output (24). In addition, it was

observed (24) that the lower the pre-infusion GEDV,

the more marked the hemodynamic effects of volume

loading. Most studies in which the value of GEDV

was assessed were performed in a cardiac surgery

setting. In patients studied in the postoperative period

after coronary artery bypass grafting (25) and heart

transplantation (26), Göedje and co-workers found a

significant correlation between changes in SV and

changes in GEDV. By contrast, they did not find any

correlation between changes in SV and changes in

CVP and Ppao. It must be kept in mind that GEDV

reflects the preload of the heart as a whole, and does

not distinguish between its left and right components.

Recently, in a study comparing two thermodilution-

based volumetric preload assessment tools with

echocardiography, Hofer et al. (27) demonstrated

that the GEDV index assessed by means of the

PiCCO system better reflects fluid responsiveness

than the RVEDVI measured by means of a modified

pulmonary artery catheter and the LVEDA measured

by means of transesophageal echocardiography. A

value of the GEDV indexB600 ml/m2 is predictive of

a positive response to fluid resuscitation (24). How-

ever, the presence of large aortic aneurysms or

catheters placed too peripherally (i.e. in the radial

artery) will lead to volumes being overestimated.

Dynamic indices

The main advantage of dynamic over static indices is

that they can distinguish between hypovolemia and

fluid responsiveness. Indeed, an increase in SV as the

result of an increase in preload depends more on the

slope of the Frank�Starling curve (Fig. 2) than on a

given level of cardiac preload (28). For the clinician,

the relevant question is not whether the patient has

an absolute blood deficit but whether volume

expansion will induce a significant increase in

cardiac output. Indeed, the intensive care unit

(ICU) patient with hemodynamic compromise

needs volume expansion when his/her heart is

operating on the steep portion of the Frank�Starling

curve (fluid responsiveness); conversely, he/she does

not respond to fluids when the heart is operating on

the flat portion (fluid unresponsiveness). There is

now a great deal of evidence to suggest that dynamic

indices based on the heart�lung interaction are

better indicators of fluid responsiveness, in particu-

lar in patients with severe sepsis receiving mechan-

ical ventilation (15, 17, 29�35).

Invasive dynamic indices

Respiratory changes in systolic arterial pressure. When

both ventricles are operating on the steep portion of

the Frank�Starling curve (preload reserve), mechan-

ical ventilation, by inducing cyclic changes in in-

trathoracic pressure, may induce changes in LVSV.

The higher the change in LVSV before fluid admin-

istration, the more important the increase in SV as a

result of fluid administration (36). As systolic arterial

pressure (SAP) depends on SV, it is assumed that

cyclic changes in SV induced by mechanical ventila-

tion could be objectively reflected by changes in

SAP. The mechanisms of these changes are ex-

plained in Fig. 3. The difference between the

maximal and minimal SAP during one mechanical

breath is called the systolic pressure variation (SPV).

When a significant SPV is observed, it is proposed

that an end-expiratory pause should be performed to

separate the inspiratory increase in SAP (dUp) from

the expiratory decrease in SAP (dDown) (Fig. 4A).

The dDown component reflects the inspiratory

decrease in venous return resulting in a fall in

LVSV during expiration (36). The dUp component

is the inspiratory increase in SAP related to emptying

of pulmonary capacitance vessels and to increased

left ventricular pressure relative to extrathoracic

vessels (37). It is accepted that changes in SAP

Fig. 2. The Frank�Starling curve showing its two components:

the steep (preload dependency) and flat (preload non-depen-

dency) components. The SV increases with cardiac preload in a

non-linear fashion. On the initial steep part of the Frank�Starling

curve, the increase in preload induces a significant increase in SV

(preload dependency). On the distal flat part of the curve, the

increase in preload does not induce a significant change in SV

(preload non-dependency).

24 S. Marghli & S. Nouira
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with changes in blood volume are mainly due to

changes in dDown. Accordingly, dDown is a better

indicator of fluid responsiveness than SPV and a

baseline dDown threshold value of 5 mmHg is an

indicator of fluid responsiveness (15).

Respiratory changes in arterial pulse pressure. Because

SPV depends not only on changes in SV but also on

the cyclic direct effects of intrathoracic pressure on

the thoracic aorta wall (38), respiratory changes in

arterial pulse pressure (DPP) were proposed as an

alternative to SPV measurement because the effect of

intrathoracic pressure is similar on both systolic and

diastolic pressure. The arterial PP is the difference

between the arterial systolic and diastolic pressures

(Fig. 4B). The arterial PP is directly proportional to

the LVSV and inversely related to the compliance of

the arterial system. Assuming that arterial compliance

does not change during a mechanical breath, respira-

tory changes in LVSV should be reflected by respira-

tory changes in peripheral PP.DPP is calculated as the

difference between the maximal and minimal values

of PP over a single respiratory cycle divided by the

mean of the two values and expressed as a percentage:

DPP (%)�(PPmax�PPmin)=[(PPmax�

PPmin)=2]�100

A threshold value of 13% has been considered (29) as

an indicator of hypovolemia and predictive of a

positive response to fluid administration.

Pulse contour analysis. The area under the systolic

part of the arterial pressure curve is directly related

to the SV, at least at the aortic level. Using specific

peripheral arterial catheters connected to a compu-

Fig. 3. Mechanisms of cyclic changes in arterial pressure during respiratory support. (1) A sudden increase in alveolar pressure during

inspiratory tidal delivery boosts blood from the pulmonary capillary bed, which transiently increases pulmonary venous return. (2) LV

enlargement during inflation as a result of an increase in pulmonary venous return. (3) Lung inflation produces an increase in pleural

pressure exerting an external pressure on the left ventricle and leading to an improvement in LV systole. (4) The combined result of the

effects described above is an increase in SV and SAP described as dUp. (5) The sudden rise in pleural pressure during inspiration increases

right ventricular (RV) outflow impedance and decreases venous return. This effect decreases the filling reserve of the left ventricle during the

next expiration. (6) The decrease in LV preload is associated with an expiratory drop in SV and arterial pressure.

Preload indicators in MODS 25
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ter, it is possible to record the area of the systolic

part of the arterial pressure curve and therefore

to monitor SV, provided that the system uses an

accurate factor of the proportionality between SV

and the specific curve area. It has been demonstrated

(30) that respiratory SV variation (SVV) assessed by

means of commercially available systems can predict

fluid responsiveness in patients receiving mechanical

ventilation.

Respiratory changes in pre-ejection period. This is a new

method to predict fluid responsiveness. The pre-

ejection period (PEP) is the time from the onset of

ventricular depolarization to the beginning of left

ventricular ejection (the time interval between the

Q wave on the electrocardiogram and the upstroke of

the radial arterial pressure) which allows assessment

of ventricular function. Even if PEP depends slightly

on afterload and cardiac contractility, it still depends

predominantly on the change in ventricular preload.

In post-coronary artery bypass surgery patients

under mechanical ventilation, Bendjelid et al. (39)

demonstrated that the respiratory variation in PEP

(DPEP) is directly related to the respiratory change

in arterial pressure (Fig. 5) and to the increase in SV

induced by fluid challenge.

Non-invasive indices

Pulse oximetry plethysmographic signal variation. As

the pulse oximetry plethysmographic signal is ap-

parently similar to the peripheral arterial pressure

waveform, Cannesson et al. (40) used pulse oxime-

try to assess preload responsiveness in mechanically

ventilated patients. They found a good correlation

between respiratory variation in the amplitude of the

pulse wave calculated from the pulse oximetry

plethysmographic waveform and the respiratory

variation in arterial pulse pressure recorded with an

arterial catheter. These findings were confirmed in

two recent studies (41,42). However, additional

studies are mandatory before oximetry waveform

variation can be recommended as a guide to fluid

therapy in mechanically ventilated patients in ICUs

and operating rooms.

Plethysmographic PEP variation. It was demonstrated

(43) that changes in PEP as measured using both

tracing of invasive pressure waves and non-invasive

pulse plethysmographic waveforms are as accurate as

invasive pulse pressure changes in the prediction of

fluid responsiveness in mechanically ventilated septic

patients.

Fig. 4. Simultaneous recording in a mechanically ventilated

patient of (A) SAP and (B) PP with airway pressure. In the

presence of fluid responsiveness there is an inspiratory increase

and an expiratory decrease in SAP. The SPV is the difference

between the maximal and minimal SAP. An end-expiratory pause

of a few seconds could identify a cyclic increase (dUp) and

decrease (dDown) from a reference line (LR) in SAP during tidal

ventilation. In the presence of fluid responsiveness, the arterial PP

increases during inspiration and decreases during expiration. I�
inspiration; E�expiration; PP min�minimal PP; PP max�
maximal PP.

Fig. 5. Respiratory changes in the PEP defined as the time

interval between the Q wave in the electrocardiogram and the

upstroke of the arterial pressure. In the presence of fluid

responsiveness there is an inspiratory (I) decrease and expiratory

(E) increase in PEP. Paw�airway pressure.

26 S. Marghli & S. Nouira
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Respiratory changes in aortic blood flow. Transesopha-

geal echocardiography allows beat-to-beat measure-

ment of the peak aortic blood velocity and flow. The

respiratory change in aortic blood velocity (DVpeak)

was calculated as the difference between the max-

imal and minimal peak aortic blood velocities over a

single respiratory cycle divided by the mean of the

two values and expressed as a percentage. A thresh-

old value of 12% allowed discrimination between

responders and non-responders in septic shock

patients (17). Recently, it has been demonstrated

(31,32) that respiratory changes in the descending

aortic blood flow (ABF) assessed by means of

esophageal Doppler provide a simple and accurate

prediction of fluid responsiveness.

Respiratory changes in vena cava diameter. The inferior

vena cava (IVC) can be easily visualized in mechani-

cally ventilated patients by transthoracic echocardio-

graphy using a subxiphoid approach (Fig. 6i). The

distensibility index of the IVC (dIVC) calculated as

the ratio of

Dmax (IVC diameter at end inspiration) �

Dmin (IVC diameter at end expiration)=Dmin

and expressed as a percentage was proposed to

detect fluid responsiveness. It has been shown in

two studies (33,34) that dIVC of 12% and 18%,

respectively were accurate cut-off values for predict-

ing fluid responsiveness in septic patients.

While the IVC is distended by means of mech-

anical insufflation, the superior vena cava (SVC)

collapses. Using a transesophageal approach, a

superior vena caval collapsibility index (SVCI)

reflecting the variation in SVC diameter under

mechanical ventilation was used to assess fluid

responsiveness. It is calculated as follows (Fig. 6ii):

(maximum diameter on expiration �

minimum diameter on inspiration)=

maximum diameter on expiration

A threshold value�36% allowed discrimination

between responders and non-responders with a

sensitivity of 90% and a specificity of 100% (35).

Passive leg raising. Passive leg raising is a manoeuvre by

means of which it is possible to abruptly increase

preload by transferring blood (:300 ml) from the

legs to the intrathoracic compartment. In passive leg

raising, the lower limbs are lifted in a straight manner

to an angle of 458. It has been demonstrated (44) that

an increase in arterial pulse pressure of 10% predicts a

positive response to fluid administration.

Limitations

Use of the respiratory variations in SV or surrogates

to detect preload reserve may result in a misleading

interpretation in some clinical situations. In this

Fig. 6. (i) Echocardiographic view showing the respiratory

changes in IVC diameter with (B) inspiratory enlargement and

(A) expiratory return to baseline level. E�expiration; I�inspira-

tion; Paw�airway pressure. (ii) Echographic view showing the

respiratory changes in the SVC diameter in one illustrative fluid

responder patient under mechanical ventilation. Before volume

expansion (a), the SVC diameter decreased (arrow) at inspiration

while it did not change significantly between inspiration and

expiration after volume expansion (b).

Preload indicators in MODS 27
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regard, it should be highlighted that these para-

meters were validated in mechanically ventilated

patients who were deeply sedated and did not

make any spontaneous respiratory effort. When

assessed in patients with spontaneous respiratory

movements (under pressure support or breathing

through a face mask) DPP failed to predict the

response to volume expansion (45). Magder and co-

workers (46,47) demonstrated the usefulness of

respiratory variation in right atrial pressure (RAP)

in patients without respiratory assistance. They

showed that an inspiratory decrease in RAP of ]

1 mmHg predicted a positive response to volume

expansion in spontaneously breathing patients.

However, these findings were not confirmed. In

addition, the use of respiratory variation in SV is

influenced by catecholamines (Fig. 7) and by the

tidal volume delivered by the ventilator. Indeed,

noradrenaline was shown to underestimate DPP and

SPV through the shift of blood from unstressed to

stressed vascular bed (48). Increasing tidal volume

should increase SVV but should also decrease

venous return and cardiac preload (49). However,

by inducing a small change in intrathoracic pressure,

a low tidal volume may be theoretically associated

with a low DPP and SVV. De Backer et al. (50)

recently reported that DPP could not predict fluid

responsiveness in patients with a tidal volume

ofB8 ml/kg. Finally, dynamic indices cannot be

used in patients with arrhythmias.

Conclusions

In critically ill patients requiring mechanical ventila-

tion, static indices of cardiac preload such as CVP

and Ppao are of limited value for predicting fluid

responsiveness because they do not correlate with

fluid expansion-induced changes in SV. Conversely,

dynamic indices were found to be good predictors of

the hemodynamic response to fluid challenge.

Although the best dynamic index probably remains

to be determined, DPP seems to predict volume

responsiveness better than other indices (51). In the

future, non-invasive measures of DPP, PEP and

changes in vena cava diameter could be valuable

methods for assessing fluid responsiveness which will

be particularly attractive for use in routine clinical

practice. Threshold values for the most widely

available indices are summarized in Tables I and II.

It should be highlighted that these indices should

only be used in patients who are under mechanical

ventilation and deeply sedated. In patients who have

either partial or complete spontaneous ventilatory

activity, only static indices can be used and special

emphasis is placed on new volumetric indices, in

particular GEDV.
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Table I. Threshold values of static indices of cardiac preload.

Index Value

CVP (mmHg) 58

Ppao (mmHg) 512

RVEDVI (ml/m2) 590

LVEDAI (cm2/m2) 55

GEDV (ml/m2) 5600

Table II. Threshold values of dynamic indices of fluid responsive-

ness.

Index Value

DRAP (mmHg) ]1

SPV (mmHg) ]10

dDown (mmHg) ]5

DPP (%) ]13

SVV (%) ]10

DVpeak (%) ]12

DABF (%) ]18

IVC distensibility (%) ]12�18

SVC collapsibility (%) ]36

DPEP (%) ]4

PLS test (%) ]10

PLS test�passive leg raising test based on variation in PP.
Fig. 7. Box plots showing changes from baseline in PP following

haemorrhage and norepinephrine treatment. The line in each box

indicates the median. The upper and lower limits of each box

indicate the 75th and 25th percentiles, respectively. The error bars

above and below each box represent the 90th and 10th percentiles,

respectively. DPulse pressure indicates the respiratory variation in

PP. *pB0.05 vs baseline; **pB0.05 vs haemorrhage.

28 S. Marghli & S. Nouira
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